Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 531
Filtrar
1.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830131

RESUMO

Production of biofuels and other value-added products from lignocellulose breakdown requires the coordinated metabolic activity of varied microorganisms. The increasing global demand for biofuels encourages the development and optimization of production strategies. Optimization in turn requires a thorough understanding of the microbial mechanisms and metabolic pathways behind the formation of each product of interest. Hydrolysis of lignocellulosic biomass is a bottleneck in its industrial use and often affects yield efficiency. The accessibility of the biomass to the microorganisms is the key to the release of sugars that are then taken up as substrates and subsequently transformed into the desired products. While the effects of different metabolic intermediates in the overall production of biofuel and other relevant products have been studied, the role of proteins and their activity under anaerobic conditions has not been widely explored. Shifts in enzyme production may inform the state of the microorganisms involved; thus, acquiring insights into the protein production and enzyme activity could be an effective resource to optimize production strategies. The application of proteomic analysis is currently a promising strategy in this area. This review deals on the aspects of enzymes and proteomics of bioprocesses of biofuels production using lignocellulosic biomass as substrate.


Assuntos
Bactérias Anaeróbias/metabolismo , Biocombustíveis/microbiologia , Biomassa , Lignina/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Anaerobiose , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/enzimologia , Celulases/metabolismo , Hidrólise , Oxigenases/metabolismo
2.
J Inorg Biochem ; 222: 111509, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34118782

RESUMO

Selenium (Se) respiration in bacteria was revealed for the first time at the end of 1980s. Although thermodynamically-favorable, energy-dense and documented in phylogenetically-diverse bacteria, this metabolic process appears to be accompanied by a number of challenges and numerous unanswered questions. Selenium oxyanions, SeO42- and SeO32-, are reduced to elemental Se (Se0) through anaerobic respiration, the end product being solid and displaying a considerable size (up to 500 nm) at the bacterial scale. Compared to other electron acceptors used in anaerobic respiration (e.g. N, S, Fe, Mn, and As), Se is one of the few elements whose end product is solid. Furthermore, unlike other known bacterial intracellular accumulations such as volutin (inorganic polyphosphate), S0, glycogen or magnetite, Se0 has not been shown to play a nutritional or ecological role for its host. In the context of anaerobic respiration of Se oxyanions, biogenic Se0 appears to be a by-product, a waste that needs proper handling, and this raises the question of the evolutionary implications of this process. Why would bacteria use a respiratory substrate that is useful, in the first place, and then highly detrimental? Interestingly, in certain artificial ecosystems (e.g. upflow bioreactors) Se0 might help bacterial cells to increase their density and buoyancy and thus avoid biomass wash-out, ensuring survival. This review article provides an in-depth analysis of selenium respiration (model selenium respiring bacteria, thermodynamics, respiratory enzymes, and genetic determinants), complemented by an extensive discussion about the evolutionary implications and the properties of biogenic Se0 using published and original/unpublished results.


Assuntos
Bactérias Anaeróbias/metabolismo , Respiração Celular/fisiologia , Selênio/metabolismo , Bactérias Anaeróbias/enzimologia , Proteínas de Bactérias/metabolismo , Oxirredutases/metabolismo , Termodinâmica
3.
Glycobiology ; 31(5): 603-612, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33270133

RESUMO

Alkyl glycoside surfactants with elongated carbohydrate chains are useful in different applications due to their improved biocompatibility. Cyclodextrin glucanotransferases can catalyze the elongation process through the coupling reaction. However, due to the presence of a hydrophobic tail, the interaction between an alkyl glycoside acceptor and the active site residues is weaker than the interaction with maltooligosaccharides at the corresponding site. Here we report the mutations of F197, G263 and E266 near the acceptor subsites in the CGTase CspCGT13 from Carboxydocella sp. The results showed that substitutions of both F197 and G263 were important for the binding of acceptor substrate dodecyl maltoside during coupling reaction. The double mutant F197Y/G263A showed enhanced coupling activity and displayed a 2-fold increase of the primary coupling product using γ-cyclodextrin as donor when compared to wildtype CspCGT13. Disproportionation activity was also reduced, which was also the case for another double mutant (F197Y/E266A) that however not showed the corresponding increase in coupling. A triple mutant F197Y/G263A/E266A maintained the increase in primary coupling product (1.8-fold increase) using dodecyl maltoside as acceptor, but disproportionation was approximately at the same level as in the double mutants. In addition, hydrolysis of starch was slightly increased by the F197Y and G263A substitutions, indicating that interactions at both positions influenced the selectivity between glycosyl and alkyl moieties.


Assuntos
Glucosiltransferases/metabolismo , Glicosídeos/biossíntese , Engenharia de Proteínas , Bactérias Anaeróbias/enzimologia , Biologia Computacional , Glucosiltransferases/genética , Glicosídeos/química , Glicosídeos/genética , Modelos Moleculares , Mutação
4.
Int J Biol Macromol ; 168: 572-590, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33309672

RESUMO

Economic production of lignocellulose degrading enzymes for biofuel industries is of considerable interest to the biotechnology community. While these enzymes are widely distributed in fungi, their industrial production from other sources, particularly by thermophilic anaerobic bacteria (growth Topt ≥ 60 °C), is an emerging field. Thermophilic anaerobic bacteria produce a large number of lignocellulolytic enzymes having unique structural features and employ different schemes for biomass degradation, which can be classified into four systems namely; 'free enzyme system', 'cell anchored enzymes', 'complex cellulosome system', and 'multifunctional multimodular enzyme system'. Such enzymes exhibit high specific activity and have a natural ability to withstand harsh bioprocessing conditions. However, achieving a higher production of these thermostable enzymes at current bioprocessing targets is challenging. In this review, the research opportunities for these distinct enzyme systems in the biofuel industry and the associated technological challenges are discussed. The current status of research findings is highlighted along with a detailed description of the categorization of the different enzyme production schemes. It is anticipated that high temperature-based bioprocessing will become an integral part of sustainable bioenergy production in the near future.


Assuntos
Bactérias Anaeróbias/crescimento & desenvolvimento , Enzimas/metabolismo , Lignina/química , Bactérias Anaeróbias/enzimologia , Proteínas de Bactérias/metabolismo , Biomassa , Estabilidade Enzimática , Termodinâmica
5.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32680862

RESUMO

Lignocellulose is one of the most abundant renewable carbon sources, representing an alternative to petroleum for the production of fuel and chemicals. Nonetheless, the lignocellulose saccharification process, to release sugars for downstream applications, is one of the most crucial factors economically challenging to its use. The synergism required among the various carbohydrate-active enzymes (CAZymes) for efficient lignocellulose breakdown is often not satisfactorily achieved with an enzyme mixture from a single strain. To overcome this challenge, enrichment strategies can be applied to develop microbial communities with an efficient CAZyme arsenal, incorporating complementary and synergistic properties, to improve lignocellulose deconstruction. We report a comprehensive and deep analysis of an enriched rumen anaerobic consortium (ERAC) established on sugarcane bagasse (SB). The lignocellulolytic abilities of the ERAC were confirmed by analyzing the depolymerization of bagasse by scanning electron microscopy, enzymatic assays, and mass spectrometry. Taxonomic analysis based on 16S rRNA sequencing elucidated the community enrichment process, which was marked by a higher abundance of Firmicutes and Synergistetes species. Shotgun metagenomic sequencing of the ERAC disclosed 41 metagenome-assembled genomes (MAGs) harboring cellulosomes and polysaccharide utilization loci (PULs), along with a high diversity of CAZymes. The amino acid sequences of the majority of the predicted CAZymes (60% of the total) shared less than 90% identity with the sequences found in public databases. Additionally, a clostridial MAG identified in this study produced proteins during consortium development with scaffoldin domains and CAZymes appended to dockerin modules, thus representing a novel cellulosome-producing microorganism.IMPORTANCE The lignocellulolytic ERAC displays a unique set of plant polysaccharide-degrading enzymes (with multimodular characteristics), cellulosomal complexes, and PULs. The MAGs described here represent an expansion of the genetic content of rumen bacterial genomes dedicated to plant polysaccharide degradation, therefore providing a valuable resource for the development of biocatalytic toolbox strategies to be applied to lignocellulose-based biorefineries.


Assuntos
Bactérias Anaeróbias/metabolismo , Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Microbioma Gastrointestinal , Lignina/metabolismo , Consórcios Microbianos , Polissacarídeos/metabolismo , Animais , Bactérias Anaeróbias/enzimologia , Celulases/metabolismo , Celulose , Rúmen/microbiologia , Saccharum
6.
Proc Natl Acad Sci U S A ; 117(16): 8850-8858, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32265283

RESUMO

Closthioamide (CTA) is a rare example of a thioamide-containing nonribosomal peptide and is one of only a handful of secondary metabolites described from obligately anaerobic bacteria. Although the biosynthetic gene cluster responsible for CTA production and the thioamide synthetase that catalyzes sulfur incorporation were recently discovered, the logic for peptide backbone assembly has remained a mystery. Here, through the use of in vitro biochemical assays, we demonstrate that the amide backbone of CTA is assembled in an unusual thiotemplated pathway involving the cooperation of a transacylating member of the papain-like cysteine protease family and an iteratively acting ATP-grasp protein. Using the ATP-grasp protein as a bioinformatic handle, we identified hundreds of such thiotemplated yet nonribosomal peptide synthetase (NRPS)-independent biosynthetic gene clusters across diverse bacterial phyla. The data presented herein not only clarify the pathway for the biosynthesis of CTA, but also provide a foundation for the discovery of additional secondary metabolites produced by noncanonical biosynthetic pathways.


Assuntos
Antibacterianos/metabolismo , Bactérias Anaeróbias/enzimologia , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Biossíntese de Peptídeos Independentes de Ácido Nucleico/genética , Tioamidas/metabolismo , Trifosfato de Adenosina/metabolismo , Bactérias Anaeróbias/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Vias Biossintéticas/genética , Biologia Computacional , Cisteína Endopeptidases/genética , Genes Bacterianos , Família Multigênica , Metabolismo Secundário/genética
7.
Appl Microbiol Biotechnol ; 104(12): 5563-5578, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32328681

RESUMO

Biological (or reductive) soil disinfestation (BSD or RSD) is a bioremediation process to control soil-borne plant pathogens using activities of indigenous bacteria in the soil. Three obligate anaerobic bacterial strains (TW1, TW10, and TB10), which were isolated from anoxic soil subjected to BSD treatments, were examined for their abilities to produce anti-fungal enzymes. All strains were affiliated with the different lineages of the genus Clostridium. The three strains decomposed ß-1,3-glucans (curdlan and laminarin), and ß-1,3-glucanase activities were detected from their culture supernatants with these glucans. The three strains also produced the enzyme with wheat bran as a growth substrate and killed the Fusarium pathogen (Fusarium oxysporum f. sp. spinaciae) in the anaerobic co-incubation conditions. Observation by fluorescence microscopy of the pathogen cells showed that the three strains had degraded the fungal cells in different manners upon co-incubation with wheat bran. When the three strains were cultivated with the dead cells or the cell wall samples prepared from the Fusarium pathogen, strain TW1 utilized these materials as easily decomposable substrates by releasing ß-1,3-glucanase. When observed by fluorescence microscopy, it appeared that strain TW1 degraded the mycelial cell wall nearly thoroughly, with the septa remaining as undecomposed luminous rings. In contrast, the other two strains decomposed neither the dead cells nor the cell wall samples directly. The results indicate that the various anaerobic bacteria proliferated in the soil under the BSD treatments should play key roles as an organized bacterial community to eliminate fungal pathogens, namely by release of anti-fungal enzymes with different properties.Key points•Three clostridial strains isolated from BSD-treated soils produced ß-1,3-glucanase.•All strains killed the Fusarium pathogen in the anaerobic co-incubation conditions.•One of the strains produced ß-1,3-glucanase with the fungal cell wall as a substrate.•The strain degraded the cell wall almost completely, except for the mycelial septa.


Assuntos
Clostridium/enzimologia , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Glucana 1,3-beta-Glucosidase/biossíntese , Microbiologia do Solo , Agricultura/métodos , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/enzimologia , Clostridium/classificação , Desinfecção , Glucana 1,3-beta-Glucosidase/farmacologia , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solo/química
8.
Enzyme Microb Technol ; 136: 109517, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32331721

RESUMO

The genome sequences of thermophilic, anaerobic, and cellulolytic-xylanolytic bacterium Herbivorax saccincola strains A7 and GGR1 have recently been determined. Although both strains belong to the same species, A7 is alkaliphilic, non-endospore-forming, and ammonium-assimilating, whereas GGR1 is neutrophilic, endospore-forming, and weak-ammonium-assimilating. To better understand the phenotypic diversity among H. saccincola strains, the genome sequences of A7 and GGR1 were compared. A7 contained three additional genes showing similarity to an alkaline stress-associated ABC-transporter but lacked four endospore formation-associated genes, AUG58543 and AUG58618 (encoding SpoVT), AUG57258 (encoding SpoVS), and AUG58614 (encoding YdhD), all of which were present in GGR1. In addition, A7 contained key ammonia assimilation genes PQQ67145 and PQQ66619, encoding ornithine cyclodeaminase and arginase, respectively, which were absent in GGR1. There was no difference in the number and types of cellulosomal-scaffolding proteins and glycosyl hydrolases between the two strains. However, cellulase and xylanase enzymes from A7 demonstrated greater activity and stability at an alkaline pH compared with those from GGR1, and amino acid substitutions were identified in 11 glycosyl hydrolases from A7. This characterization though comparative genomic analysis provides useful information for understanding the genetic basis of the phenotypic differences between H. saccincola strains isolated from distinct areas and environments.


Assuntos
Celulase/metabolismo , Celulose/metabolismo , Clostridiales/genética , Genoma Bacteriano , Xilanos/metabolismo , Compostos de Amônio/metabolismo , Bactérias Anaeróbias/enzimologia , Bactérias Anaeróbias/genética , Clostridiales/enzimologia , Genômica , Fenótipo , Filogenia
9.
Extremophiles ; 23(6): 793-808, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31555903

RESUMO

Anaerobic cultivable microbial communities in thermal springs producing hydrolytic enzymes were studied. Thermal water samples from seven thermal springs located in the Andean volcanic belt, in the eastern and central mountain ranges of the Colombian Andes were used as inocula for the growth and isolation of thermophilic microorganisms using substrates such as starch, gelatin, xylan, cellulose, Tween 80, olive oil, peptone and casamino acids. These springs differed in temperature (50-70 °C) and pH (6.5-7.5). The predominant ion in eastern mountain range thermal springs was sulphate, whereas that in central mountain range springs was bicarbonate. A total of 40 anaerobic thermophilic bacterial strains that belonged to the genera Thermoanaerobacter, Caloramator, Anoxybacillus, Caloranaerobacter, Desulfomicrobium, Geotoga, Hydrogenophilus, Desulfacinum and Thermoanaerobacterium were isolated. To investigate the metabolic potential of these isolates, selected strains were analysed for enzymatic activities to identify strains than can produce hydrolytic enzymes. We demonstrated that these thermal springs contained diverse microbial populations of anaerobic thermophilic comprising different metabolic groups of bacteria including strains belonging to the genera Thermoanaerobacter, Caloramator, Anoxybacillus, Caloranaerobacter, Desulfomicrobium, Geotoga, Hydrogenophilus, Desulfacinum and Thermoanaerobacterium with amylases, proteases, lipases, esterases, xylanases and pectinases; therefore, the strains represent a promising source of enzymes with biotechnological potential.


Assuntos
Bactérias Anaeróbias/enzimologia , Proteínas de Bactérias/química , Fontes Termais/microbiologia , Temperatura Alta , Hidrolases/química , Microbiota , Microbiologia da Água , Bactérias Anaeróbias/classificação , Proteínas de Bactérias/metabolismo , Colômbia , Concentração de Íons de Hidrogênio , Hidrolases/metabolismo , Filogenia
10.
J Biotechnol ; 306: 105-117, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541665

RESUMO

The development of a bio-refinery industry based on liquid fuels is presumably key to successful replacement of fossil fuels and a reduction of carbon dioxide (CO2) emissions. Ethanol and longer-chain alcohols are supposed to play a key role since they are relatively easy to produce, using microorganisms as whole-cell biocatalysts. Alcohols may be produced from lignocellulose-derived biomass or from synthesis gas (hydrogen, H2; CO2, carbon monoxide, CO). In anaerobes, common pathways involve the reduction of the intermediate acetyl-CoA with NAD(P)H by aldehyde (ALDH) and alcohol dehydrogenases (ADH). Alternatively, alcohols may be produced by the direct reduction of externally added or intermediately produced organic acids with reduced ferredoxin (Fdred). The key enzyme catalyzing this thermodynamically difficult reaction is aldehyde:ferredoxin oxidoreductase (AOR), an oxygen sensitive protein present in some anaerobic bacteria and archaea. Here, we present increasing evidence for the importance of the AOR-ADH pathway in alcohol producing anaerobes. AOR heavily depends on compounds with a low redox potential, and reactions potentially coupled to the pathway are discussed. The putative ancient AOR-ADH pathway may be relatively widespread among anaerobes, and it may play an important role in a sustainable bioenergy concept via the reduction of organic acids to their corresponding alcohols.


Assuntos
Álcoois/metabolismo , Aldeído Oxirredutases/metabolismo , Bactérias Anaeróbias/metabolismo , Aldeídos/metabolismo , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/enzimologia , Biocatálise , Biocombustíveis/microbiologia , Ácidos Carboxílicos/metabolismo , Ferredoxinas/metabolismo , Gases/metabolismo , Oxirredução
11.
Biochim Biophys Acta Bioenerg ; 1860(9): 734-744, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31376363

RESUMO

The atmospheric concentration of the potent greenhouse gases methane and nitrous oxide (N2O) has increased drastically during the last century. Methylomirabilis bacteria can play an important role in controlling the emission of these two gases from natural ecosystems, by oxidizing methane to CO2 and reducing nitrite to N2 without producing N2O. These bacteria have an anaerobic metabolism, but are proposed to possess an oxygen-dependent pathway for methane activation. Methylomirabilis bacteria reduce nitrite to NO, and are proposed to dismutate NO into O2 and N2 by a putative NO dismutase (NO-D). The O2 produced in the cell can then be used to activate methane by a particulate methane monooxygenase. So far, the metabolic model of Methylomirabilis bacteria was based mainly on (meta)genomics and physiological experiments. Here we applied a complexome profiling approach to determine which of the proposed enzymes are actually expressed in Methylomirabilis lanthanidiphila. To validate the proposed metabolic model, we focused on enzymes involved in respiration, as well as nitrogen and carbon transformation. All complexes suggested to be involved in nitrite-dependent methane oxidation, were identified in M. lanthanidiphila, including the putative NO-D. Furthermore, several complexes involved in nitrate reduction/nitrite oxidation and NO reduction were detected, which likely play a role in detoxification and redox homeostasis. In conclusion, complexome profiling validated the expression and composition of enzymes hypothesized to be involved in the energy, methane and nitrogen metabolism of M. lanthanidiphila, thereby further corroborating their unique metabolism involved in the environmentally relevant process of nitrite-dependent methane oxidation.


Assuntos
Bactérias Anaeróbias/enzimologia , Proteínas de Bactérias/metabolismo , Metano/química , Complexos Multienzimáticos/metabolismo , Nitratos/química , Óxido Nítrico/química , Metano/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Oxigenases/metabolismo
12.
Anaerobe ; 55: 29-34, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30315962

RESUMO

nim genes are associated, in combination with other factors, with acquired resistance to metronidazole (MTZ) in anaerobes. These genes encode 5-nitroimidazole reductase enzymes (Nim proteins) that reduce MTZ into an inactive compound. Eleven variants (nimA to nimK) are currently described in anaerobes with either a chromosomal or a plasmidic location. Mostly found in members of the Bacteroides fragilis group, nim genes were demonstrated in anaerobic taxa outside the phylum Bacteroidetes. Nitroreductase enzymes, weakly related to those found in Bacteroidetes but associated with MTZ inactivation, were also characterized both in anaerobic and non-anaerobic taxa. Published data only poorly reflect the growing number of data from cultivation-independent studies and sequences deposited in databases. Considering this limitation, we performed herein an analysis of the sequence databases with the aim to increase the current knowledge on Nim protein distribution and diversity. The 250 sequences the most closely related to the 11 known Nim proteins were selected and analyzed for identity level and phylogenetic relationships with Nim A to K proteins. The analysis revealed a larger diversity of anaerobic species harboring known Nim proteins than that currently described in the literature. Putative new variants of known Nim proteins and novel Nim proteins were found. In addition, nitroreductase proteins and homologs related to the pyridoxamine 5'-phosphate oxidase family were found in highly diverse anaerobic and aerobic taxa of human but also animal and environmental origin. On the other hand, we found a very low number of sequences recovered from metagenomic studies. Considering the different databases currently available to identify antimicrobial resistance genes (ARG) among metagenomic sequences, we hypothesized that this may, at least in part, be related to the incompleteness of ARG databases because none of them includes the 11 described nim genes at the time of our study. Both the wide distribution of proteins with potential MTZ inactivation ability within the bacterial world and a wider diversity of Nim determinants than expected from published literature is underlined in this sequence database analysis.


Assuntos
Anti-Infecciosos/metabolismo , Biologia Computacional , Farmacorresistência Bacteriana , Metronidazol/metabolismo , Nitroimidazóis/metabolismo , Oxirredutases/metabolismo , Bactérias Aeróbias/enzimologia , Bactérias Aeróbias/genética , Bactérias Anaeróbias/enzimologia , Bactérias Anaeróbias/genética , Variação Genética , Oxirredutases/genética
13.
Anaerobe ; 55: 40-53, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30316817

RESUMO

Acquired resistance to metronidazole, a 5-nitroimidazole drug largely used worldwide in the empirical treatment of infections caused by anaerobes, is worrisome, especially since such resistance has been described in multidrug-resistant anaerobic bacteria. In anaerobes, acquired resistance to metronidazole may be due to a combination of various and complex mechanisms. Among them, nim genes, possibly located on mobile genetic elements, encode nitro-imidazole-reductases responsible for drug inactivation. Since the first description of Nim proteins about 25 years ago, more nim genes have been identified; currently 11 nim genes are known (nimA to nimK). Mostly reported in Bacteroides fragilis group isolates, nim genes are now described in a variety of anaerobic genera encompassing the 4 main groups of Gram-negative and Gram-positive bacilli and cocci, with variable expression ranging from phenotypically silent to low-level or high-level resistance to metronidazole. This review describes the trends of metronidazole resistance rates among anaerobes over the past 20 years and summarizes current knowledge on mechanisms involved in this resistance. It also provides an update on the phylogenetic and geographical distribution of nim genes, the mechanisms involved in their expression and regulation, and their role in metronidazole resistance.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias Anaeróbias/efeitos dos fármacos , Farmacorresistência Bacteriana , Metronidazol/farmacologia , Bactérias Anaeróbias/enzimologia , Bactérias Anaeróbias/genética , Variação Genética , Nitroimidazóis/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo
14.
Methods Mol Biol ; 1876: 37-54, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30317473

RESUMO

Carbon monoxide dehydrogenases (CODHs) catalyze the reversible oxidation of CO with water to CO2, two electrons, and two protons. Two classes of CODHs exist, having evolved from different scaffolds featuring active sites built from different transition metals. The basic properties of both classes are described in this overview chapter.


Assuntos
Aldeído Oxirredutases/química , Aldeído Oxirredutases/metabolismo , Monóxido de Carbono/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Aldeído Oxirredutases/classificação , Anaerobiose , Archaea/enzimologia , Bactérias Anaeróbias/enzimologia , Domínio Catalítico , Evolução Molecular , Modelos Moleculares , Complexos Multienzimáticos/classificação , Conformação Proteica
15.
Archaea ; 2018: 6201541, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532656

RESUMO

Recently, a new oxygenic pathway has been proposed based on the disproportionation of NO with putative NO dismutase (Nod). In addition to a new process in nitrogen cycling, this process provides ecological advantages for the degradation of substrates in anaerobic conditions, which is of great significance for wastewater treatment. However, the Nod distribution in aquatic environments is rarely investigated. In this study, we obtained the nod genes with an abundance of 2.38 ± 0.96 × 105 copies per gram of dry soil from the Zoige wetland and aligned the molecular characteristics in the corresponding Nod sequences. These Nod sequences were not only found existing in NC10 bacteria, but were also found forming some other clusters with Nod sequences from a WWTP reactor or contaminated aquifers. Moreover, a new subcluster in the aquifer-similar cluster was even dominant in the Zoige wetland and was named the Z-aquifer subcluster. Additionally, soils from the Zoige wetland showed a high potential rate (10.97 ± 1.42 nmol of CO2 per gram of dry soil per day) for nitrite-dependent anaerobic methane oxidation (N-DAMO) with low abundance of NC10 bacteria, which may suggest a potential activity of Nod in other clusters when considering the dominance of the Z-aquifer subcluster Nod. In conclusion, we verified the occurrence of Nod in an alpine wetland for the first time and found a new subcluster to be dominant in the Zoige wetland. Moreover, this new subcluster of Nod may even be active in the N-DAMO process in this alpine wetland, which needs further study to confirm.


Assuntos
Bactérias Anaeróbias/enzimologia , Bactérias Anaeróbias/metabolismo , Microbiologia Ambiental , Metano/metabolismo , Óxido Nítrico/metabolismo , Áreas Alagadas , Anaerobiose , Metagenoma , Análise de Sequência de DNA
16.
J Biol Chem ; 293(11): 4201-4212, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29367338

RESUMO

The cellulosome is a remarkably intricate multienzyme nanomachine produced by anaerobic bacteria to degrade plant cell wall polysaccharides. Cellulosome assembly is mediated through binding of enzyme-borne dockerin modules to cohesin modules of the primary scaffoldin subunit. The anaerobic bacterium Acetivibrio cellulolyticus produces a highly intricate cellulosome comprising an adaptor scaffoldin, ScaB, whose cohesins interact with the dockerin of the primary scaffoldin (ScaA) that integrates the cellulosomal enzymes. The ScaB dockerin selectively binds to cohesin modules in ScaC that anchors the cellulosome onto the cell surface. Correct cellulosome assembly requires distinct specificities displayed by structurally related type-I cohesin-dockerin pairs that mediate ScaC-ScaB and ScaA-enzyme assemblies. To explore the mechanism by which these two critical protein interactions display their required specificities, we determined the crystal structure of the dockerin of a cellulosomal enzyme in complex with a ScaA cohesin. The data revealed that the enzyme-borne dockerin binds to the ScaA cohesin in two orientations, indicating two identical cohesin-binding sites. Combined mutagenesis experiments served to identify amino acid residues that modulate type-I cohesin-dockerin specificity in A. cellulolyticus Rational design was used to test the hypothesis that the ligand-binding surfaces of ScaA- and ScaB-associated dockerins mediate cohesin recognition, independent of the structural scaffold. Novel specificities could thus be engineered into one, but not both, of the ligand-binding sites of ScaB, whereas attempts at manipulating the specificity of the enzyme-associated dockerin were unsuccessful. These data indicate that dockerin specificity requires critical interplay between the ligand-binding surface and the structural scaffold of these modules.


Assuntos
Bactérias Anaeróbias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Subunidades Proteicas , Homologia de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato
17.
Artigo em Inglês | MEDLINE | ID: mdl-29158284

RESUMO

Relebactam is an important beta-lactamase inhibitor for certain aerobic organisms, but alone it has no antianaerobic activity, with most anaerobes having MICs of ≥32 µg/ml with the exception of a very few strains. There was no enhancement or antagonism of imipenem activity with the addition of relebactam, including activity against imipenem-resistant strains. The relebactam-imipenem combination had excellent overall activity against the anaerobes tested.


Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Bactérias Anaeróbias/enzimologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Imipenem/farmacologia , Testes de Sensibilidade Microbiana/métodos
18.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-30647903

RESUMO

Microbial adaptation to extreme conditions takes many forms, including specialized metabolism which may be crucial to survival in adverse conditions. Here, we analyze the diversity and environmental importance of systems allowing microbial carbon monoxide (CO) metabolism. CO is a toxic gas that can poison most organisms because of its tight binding to metalloproteins. Microbial CO uptake was first noted by Kluyver and Schnellen in 1947, and since then many microbes using CO via oxidation have emerged. Many strains use molecular oxygen as the electron acceptor for aerobic oxidation of CO using Mo-containing CO oxidoreductase enzymes named CO dehydrogenase. Anaerobic carboxydotrophs oxidize CO using CooS enzymes that contain Ni/Fe catalytic centers and are unrelated to CO dehydrogenase. Though rare on Earth in free form, CO is an important intermediate compound in anaerobic carbon cycling, as it can be coupled to acetogenesis, methanogenesis, hydrogenogenesis, and metal reduction. Many microbial species-both bacteria and archaea-have been shown to use CO to conserve energy or fix cell carbon or both. Microbial CO formation is also very common. Carboxydotrophs thus glean energy and fix carbon from a "metabolic leftover" that is not consumed by, and is toxic to, most microorganisms. Surprisingly, many species are able to thrive under culture headspaces sometimes exceeding 1 atmosphere of CO. It appears that carboxydotrophs are adapted to provide a metabolic "currency exchange" system in microbial communities in which CO arising either abiotically or biogenically is converted to CO 2 and H 2 that feed major metabolic pathways for energy conservation or carbon fixation. Solventogenic CO metabolism has been exploited to construct very large gas fermentation plants converting CO-rich industrial flue emissions into biofuels and chemical feedstocks, creating renewable energy while mitigating global warming. The use of thermostable CO dehydrogenase enzymes to construct sensitive CO gas sensors is also in progress.


Assuntos
Adaptação Biológica , Bactérias/metabolismo , Monóxido de Carbono/metabolismo , Aldeído Oxirredutases/metabolismo , Bactérias Anaeróbias/enzimologia , Biocombustíveis , Complexos Multienzimáticos/metabolismo
19.
Lett Appl Microbiol ; 64(5): 355-363, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28256106

RESUMO

Carbon monoxide (CO) is the simplest oxocarbon generated by the decomposition of organic compounds, and it is expected to be in marine sediments in substantial amounts. However, the availability of CO in the deep subseafloor sedimentary biosphere is largely unknown even though anaerobic oxidation of CO is a thermodynamically favourable reaction that possibly occurs with sulphate reduction, methanogenesis, acetogenesis and hydrogenesis. In this study, we surveyed for the first time the distribution of the CO dehydrogenase gene (cooS), which encodes the catalytic beta subunit of anaerobic CO dehydrogenase (CODH), in subseafloor sediment-core samples from the eastern flank of the Juan de Fuca Ridge, Mars-Ursa Basin, Kumano Basin, and off the Shimokita Peninsula, Japan, during Integrated Ocean Drilling Program (IODP) Expeditions 301, 308 and 315 and the D/V Chikyu shakedown cruise CK06-06, respectively. Our results show the occurrence of diverse cooS genes from the seafloor down to about 390 m below the seafloor, suggesting that microbial communities have metabolic functions to utilize CO in anoxic microbial ecosystems beneath the ocean floor, and that the microbial community potentially responsible for anaerobic CO oxidation differs in accordance with possible energy-yielding metabolic reactions in the deep subseafloor sedimentary biosphere. SIGNIFICANCE AND IMPACT OF THE STUDY: Little is known about the microbial community associated with carbon monoxide (CO) in the deep subseafloor. This study is the first survey of a functional gene encoding anaerobic carbon monoxide dehydrogenase (CODH). The widespread occurrence of previously undiscovered CO dehydrogenase genes (cooS) suggests that diverse micro-organisms are capable of anaerobic oxidation of CO in the deep subseafloor sedimentary biosphere.


Assuntos
Aldeído Oxirredutases/genética , Bactérias Anaeróbias/enzimologia , Bactérias Anaeróbias/genética , Monóxido de Carbono/metabolismo , Sedimentos Geológicos/microbiologia , Complexos Multienzimáticos/genética , Bactérias Anaeróbias/metabolismo , Sequência de Bases , DNA Bacteriano/genética , Japão , Filogenia , Análise de Sequência de DNA , Microbiologia da Água
20.
J Microbiol Biotechnol ; 27(2): 271-276, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-27780955

RESUMO

A highly thermostable ß-(1-4)-glucanase (NA23_08975) gene (fig) from Fervidobacterium islandicum AW-1, a native-feather degrading thermophilic eubacterium, was cloned and expressed in Escherichia coli. The recombinant FiG (rFiG) protein showed strong activity toward ß-D-glucan from barley (367.0 IU/mg), galactomannan (174.0 IU/mg), and 4-nitrophenyl-cellobioside (66.1 IU/mg), but relatively weak activity was observed with hydroxyethyl cellulose (5.3 IU/mg), carboxymethyl cellulose (2.4 IU/mg), and xylan from oat spelt (1.4 IU/mg). rFiG exhibited optimal activity at 90°C and pH 5.0. In addition, this enzyme was extremely thermostable, showing a half-life of 113 h at 85°C. These results indicate that rFiG could be used for hydrolysis of cellulosic and hemicellulosic biomass substrates for biofuel production.


Assuntos
Bactérias Anaeróbias/enzimologia , Extremófilos/enzimologia , Glucana 1,4-beta-Glucosidase/química , Glucana 1,4-beta-Glucosidase/metabolismo , Sequência de Aminoácidos , Bactérias Anaeróbias/genética , Biocombustíveis , Celulose/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Galactose/análogos & derivados , Glucana 1,4-beta-Glucosidase/genética , Glucana 1,4-beta-Glucosidase/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Mananas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura , Xilanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...